Reasoning and Problem Solving Step 12: Count in 25s

National Curriculum Objectives:

Mathematics Year 4: (4N1) Count in multiples of 6, 7, 9, 25 and 1000

Differentiation:

Questions 1, 4 and 7 (Reasoning)
Developing Determine if statements are true or false using knowledge of counting forwards in 25s from multiples of 25.
Expected Determine if statements are true or false using knowledge of counting forwards and backwards in 25 s from multiples of 25.
Greater Depth Determine if statements are true or false using knowledge of counting forwards and backwards from any number in $\mathbf{2 5 s}$.

Questions 2, 5 and 8 (Problem Solving)
Developing Find the third number in a sequence from one given number when counting forwards in 25 s . 2 and 3 -digit multiples of 25 represented using place value counters. Expected Find all possible combinations of a 3 number sequence from one given number when counting in 25 s. 3 and 4 -digit non-multiples of 25 represented in a place value grid. Greater Depth Find all possible combinations of a 3 number sequence from one given number when counting in 25s. 3 and 4 -digit non-multiples of 25 displayed using mixed representations.

Questions 3, 6 and 9 (Reasoning)
Developing Use knowledge of counting forwards in 25 s from 0 to solve problems in context. 2 and 3-digit multiples of 25.
Expected Use knowledge of counting forwards and backwards in 25 s to solve problems in context. 3-digit non-multiples of 25.
Greater Depth Use knowledge of counting forwards and backwards in 25s to solve problems in context. 3 and 4-digit non-multiples of 25 using some mixed representation.

More Year 4 Place Value resources.

Did you like this resource? Don't forget to review it on our website.

Is he correct? Prove it.

Is he correct? Prove it.

4a. Is each statement true or false? Explain why.

All multiples of 25 are multiples of 50.

5a. There are 3 numbers in a sequence. One of them is represented below. What could the other 2 numbers be? Write down all possible combinations.

Sean

Is he correct? Prove it.

4b. Is each statement true or false? Explain why.

5b. There are 3 numbers in a sequence. One of them is represented below. What could the other 2 numbers be? Write down all possible combinations.

6b. Gabriel says,

Is he correct? Prove it.

8a. There are 3 numbers in a sequence.
One of them is represented below. What
could the other 2 numbers be? Write down
all possible combinations.

9a. Tom says,

Tom

Is he correct? Prove it.

8b. There are 3 numbers in a sequence. One of them is represented below. What could the other 2 numbers be? Write down all possible combinations.

9b. Harry says,

Is he correct? Prove it.

Reasoning and Problem Solving Count in 25s

Reasoning and Problem Solving Count in 25s

Developing

1a. Becky's statement is true, $50+25=75$.
Chen's statement is statement is true, 4 x $25=100$ so other multiples of 100 will appear in the sequence.
2a. 125
3a. Seb is correct. $25 \times 3=75$

Expected

4a. Isabel's statement is false, not all multiples of 25 are multiples of 50 e.g. 75 . Alison's statement is false, not all multiples of 25 are multiples of 100 . Ben's statement is true, 50 is a multiple of 25 as $\mathbf{2 5}$ goes into 50 exactly.
5a. 685 and 710; 710 and 760; 760 and 785
6a. Sean is correct. $25 \times 8=200$

Greater Depth

7a. Lauren's statement is true, $10 \times 100=$ 1,000 . Penny's statement is false, it is 1,130 . Caius's statement is false, 1,220 + $125=$ 1,345.
8a. 3,365 and 3,$390 ; 3,390$ and 3,$440 ; 3,440$ and 3,465
9a. Tom is correct, $4 \times 25=100$ so 40×25 $=1,000$

Developing

1b. Aisha's statement is true, every $2^{\text {nd }}$ number ends in 0 and is a multiple of 10. Ben's statement is false, he will reach 200. 195 is not a multiple of 25 .
2b. 175
3b. Cian is incorrect. $25 \times 4=100$ so he would have to have 4 bags.

Expected

4b. Nick's statement is true, all multiples of 25 end in a 0 or 5 . Ellie's statement is false, she will reach 300 . Esme's statement is true, 100 is a multiple of 25 as 25 goes into 100 exactly.
5b. 1,195 and 1,220; 1,220 and 1,270; 1,270 and 1,295
6b. Gabriel is correct. $25 \times 12=300$

Greater Depth

7b. Dev's statement is false, numbers that divide exactly by 10 end in a 0 and some multiples of 25 end in 5 e.g. 75. Amy's statement is false, 1,005-25 = 980. Alice's statement is true, 50 is a multiple of 25 so any number ending in 50 is also a multiple of 25 .
8b. $£ 714$ and $£ 739$; $£ 739$ and $£ 789$; $£ 789$ and $£ 814$.
9b. Harry is correct, half of the levels $=7$ and $7 \times 25=175$.

