Year 4: Week 1, Day 5
 Written division

Each day covers one maths topic. It should take you about 1 hour or just a little more.

1. Start by reading through the Learning Reminders. They come from our PowerPoint slides.

2. Tackle the questions on the Practice Sheet. There might be a choice of either Mild (easier) or Hot (harder)!
Check the answers.

3. Finding it tricky? That's OK... have a go with a grown-up at A Bit Stuck?

4. Have I mastered the topic? A few questions to Check your understanding.
Fold the page to hide the answers!

Identify the value of the ' 4 ' in the following numbers:
(a) 3.407
(b) 4.821
(c) 0.043
(d) 5.104
(e) 48,739

Learning Reminders

Divide 2-digit numbers by 1-digit numbers (with remainders) on the empty number line.

Learning Reminders

Divide 2-digit numbers by 1-digit numbers (with remainders), using a vertical layout.

Learning Reminders

Divide 2-digit numbers by 1-digit numbers (with remainders), using a vertical layout.

Practice Sheet Mild
 Dividing with remainders

$$
\begin{array}{lll}
38 \div 3 & 43 \div 3 & 56 \div 3 \\
47 \div 4 & 54 \div 4 & 59 \div 4 \\
53 \div 5 & 61 \div 5 & 74 \div 5
\end{array}
$$

Challenge

Write three different divisions where these statements are true:

- A 2-digit number is divided by 3
- The answer is more than 15
- The remainder is 2

Practice Sheet Hot Dividing with remainders

1. $77 \div 5$
2. $93 \div 4$
3. $86 \div 6$
4. $137 \div 5$
5. $53 \div 4$
6. $100 \div 9$
7. $98 \div 6$
8. $75 \div 6$
9. $80 \div 3$
10. $117 \div 6$
11. $70 \div 3$
12. $97 \div 5$
13. $120 \div 9$

Challenge

Write three different divisions where these statements are true:

- A 2-digit number is divided by 3
- The answer is more than 15
- The remainder is 2

Practice Sheet Answers

Dividing with remainders (mild)

$38 \div 3=12 r 2$
$43 \div 3=14 r 1$
$54 \div 4=13 r 2$
$61 \div 5=12 r 1$
$56 \div 3=18 r 2$
$47 \div 4=11 r 3$
$59 \div 4=14 r 3$
$53 \div 5=10 r 3$

Challenge

Write three different divisions where these statements are true:

- A 2-digit number is divided by 3
- The answer is more than 15
- The remainder is 2
e.g. $\quad 59 \div 3=19 r 2 \quad 71 \div 3=23 r 2 \quad 89 \div 3=29 r 2 \quad 23 \div 3=7 r 2 \quad 74 \div 3=24 r 2 \quad 65 \div 3=21 r 2$

Dividing with remainders (hot)

1. $77 \div 5=15 r 2$
2. $113 \div 5=22 r 3$
3. $53 \div 4=13 r 1$
4. $75 \div 6=12 r 3$
5. $70 \div 3=23 r 1$
6. $93 \div 4=23 r 1$
7. $86 \div 6=14 r 2$
8. $100 \div 9=11 r 1$
9. $80 \div 3=26 r 2$
10. $97 \div 5=19 \mathrm{r} 2$
11. $107 \div 4=26 r 3$
12. $137 \div 5=27 r 2$
13. $98 \div 6=16 r 2$
14. $117 \div 6=19 \mathrm{r} 3$
15. $120 \div 9=13 r 3$

Challenge

Write three different divisions where these statements are true:

- A 2-digit number is divided by 3
- The answer is more than 15
- The remainder is 2
e.g.
$59 \div 3=19 r 2 \quad 71 \div 3=23 r 2 \quad 89 \div 3=29 r 2 \quad 23 \div 3=7 r 2 \quad 74 \div 3=24 r 2 \quad 65 \div 3=21 r 2$

A Bit Stuck? Left overs

Work in pairs, but record your work on your own sheet.

Things you will need:

- 0 to 100 beaded lines
- A pencil

What to do:

- Use chunking to work out the answers to these divisions.
- Remember to draw a big jump of 10 times the number you are dividing by. Then look to see how much is left.
- Work out at least five answers.

$$
\begin{aligned}
& 38 \div 3 \\
& 64 \div 5 \\
& 50 \div 4 \\
& 76 \div 5 \\
& 43 \div 3 \\
& 72 \div 5 \\
& 61 \div 4
\end{aligned}
$$

S-t-r-e-t-c-h:
Draw your own number line jottings to work out the answers.

Learning outcomes:

- I can use chunking on a beaded line to divide numbers just beyond the times tables (with remainders).
- I am beginning to draft my own number line jottings when using chunking (with remainders).
© Hamilton Trust

Check your understanding

Questions

Draw a number line to solve these two divisions.
(i) $115 \div 5$
(ii) $65 \div 5$

What is the relationship between the $2^{\text {nd }}$ hop on the two lines?

Look at the remainders in each of these divisions.
Compare the remainder with the divisor.
(a) $54 \div 4$
(b) $99 \div 6$
(c) $100 \div 8$

Can you write another division where the remainder is half the divisor?
Fole here to hide answers

Check your understanding

Answers

Use a number line to solve these two divisions.
(i) $115 \div 5 \quad 23$ (Jumps of 20 and 3).
(ii) $65 \div 5 \quad 13$ (Jumps of 10 and 3)

What is the relationship between the $2^{\text {nd }}$ hop on the two lines? In each case it is how many 5 s in 15 .

Look at the remainders in each of these divisions.
Compare the remainder with the divisor.
(a) $54 \div 413 r 2$
(b) $99 \div 616 r 3$
(c) $100 \div 8 \quad 12 r 4$

Can you write another division where the remainder is half the divisor? Many possible answers - in each case the number divided will be halfway between two multiples of the divisor.

